Task-Based Synchronization in Complex Noisy Networks

H. Guclu (LANL)

G. Korniss (Rensselaer), Z. Toroczkai (Notre Dame)

ALGORITHMS, INFERENCE AND STATISTICAL MECHANICS SANTA FE, MAY 1-4, 2007

Task-Completion System (General)

 $G_{\mathcal{T}}$

TAP, Spin glass

 $G_{\mathcal{P}}$

Task-Completion System (Particular)

Magnetic systems, factory physics, e-commerce.

Conservative PDES

Lubachevsky '87, '88

A fundamental question of computing: Scalability

Mapping to surface growth problem

Computation Scalability

$$\langle u(L) \rangle = \left\langle \frac{\text{\# of non-idling PEs}}{\text{total \# of PEs}(L)} \right\rangle$$

$$\lim_{L \to \infty} \langle u(L) \rangle \to u(\infty) > 0$$

Measurement Scalability

$$\langle w^2(L) \rangle = \left\langle \frac{1}{L} \sum_{i=1}^{L} (\tau_i - \hat{\tau})^2 \right\rangle$$

$$\lim_{L \to \infty} \left\langle w^2(L) \right\rangle \to \text{const.}$$

BCS in 1D (Ring Topology)

This surface growth model is independent on the object of simulation, it corresponds to the massively parallel algorithm.

$$u(t, L) = \frac{\text{\# of non-idling PEs}}{\text{total \# of PEs }(L)} = \text{density of local minima}$$

$$\tau_i(t+1) = \tau_i(t) + \Theta[\tau_{i-1}(t) - \tau_i(t)]\Theta[\tau_{i+1}(t) - \tau_i(t)]\eta_i$$

 η_i is independent of t, i, and $\{\tau_i\}$

Slope variables:
$$\phi_i = au_i - au_{i-1}$$

$$\phi_i' - \phi_i = \Theta(-\phi_i)\Theta(\phi_{i+1})\eta_i - \Theta(-\phi_{i-1})\Theta(\phi_i)\eta_{i-1}$$

Biased diffusion

$$\underbrace{\mathtt{PBC:}}_{i=1} \phi_i = 0$$

$$\langle \phi_i'
angle - \langle \phi_i
angle = - [\langle j_i
angle - \langle j_{i-1}
angle]$$
 Continuity equation

$$\langle j_i
angle = - \langle \Theta(-\phi_i) \Theta(\phi_{i+1})
angle$$
 Average current

Due to translational invariance:

mean velocity of the surface
$$= |\langle j \rangle| = \langle u \rangle$$

Naïve coarse-graining: $\Theta(\phi) = \lim_{\kappa o 0} \Theta(\phi) = \lim_{\kappa o 0} rac{1}{2} [1 + anh rac{\phi}{\kappa}]$

To leading order in ϕ/κ

$$\langle \phi_i' \rangle - \langle \phi_i \rangle = \frac{1}{4\kappa} \langle \phi_{i+1} - 2\phi_i + \phi_{i-1} \rangle - \frac{1}{4\kappa^2} \langle \phi_i (\phi_{i+1} - \phi_{i-1}) \rangle$$

In the continuum limit:

$$\frac{\partial \hat{\phi}}{\partial t} = \frac{\partial^2 \hat{\phi}}{\partial x^2} - \lambda \frac{\partial}{\partial x} (\hat{\phi}^2)$$

Burger's equation for the coarse-grained field

Width diverges ⇒ NOT measurement scalable

$$\alpha = \frac{1}{2}, \ \beta = \frac{1}{3}, \ z = \frac{\alpha}{\beta} = \frac{3}{2}$$
$$\langle w^2(N) \rangle \sim N^{2\alpha} = N \text{ in 1D}$$
$$\partial_i \hat{\tau}_i = \nabla^2 \hat{\tau}_i - \lambda (\nabla \hat{\tau}_i)^2 + \eta_i$$

1D short-range network

$$N\delta_{k,-k'}S(k,t) = \langle \tilde{\tau}_k(t)\tilde{\tau}_{k'}(t)\rangle$$
$$\tilde{\tau}_k = \sum_{j=1}^N e^{-ikj}\hat{\tau}_j$$

$$S(k) = \lim_{t \to \infty} S(k, t) = \frac{D}{2[1 - \cos(k)]} \sim \frac{1}{k^2}$$

$$\left\langle w^2 \right\rangle = \frac{1}{L} \sum_{k \neq 0} S(k) = G(0) \sim \frac{D}{12} L \sim L$$

$$G(l) = \frac{1}{L} \sum_{i=1}^{L} G_{i,i+l} = \frac{1}{L} \sum_{k \neq 0} e^{ikl} S(k)$$

$$G_{i,i+l} = \langle (\tau_i - \bar{\tau})(\tau_{i+l} - \bar{\tau}) \rangle$$

$$G(l) \sim \frac{D}{2} \left(\frac{L}{6} - l \right)$$

Toroczkai et al., PRE, '00

Finite utilization \Rightarrow computationally scalable

$$\langle u(L) \rangle \simeq \langle u(\infty) \rangle + \frac{\text{const.}}{L}$$

$$\langle u(\infty) \rangle \simeq 0.2465$$

$$\text{const.} \simeq 0.2219$$

Regular Network

$$\lim_{L \to \infty} \left\langle w^2(N) \right\rangle \sim N$$

Small-World Network

$$\lim_{L \to \infty} \left\langle w^2(N) \right\rangle \sim \text{const.}$$

Hastings, PRL (2003); Kozma et al., PRL (2003); Korniss et al., Science (2003)

SW in 1D

$$S(k) \sim \frac{1}{k^2 + \gamma} \quad \gamma = \gamma(p)$$
$$\langle w^2 \rangle = \frac{1}{L} \sum_{k \neq 0} S(k) \sim \frac{1}{\sqrt{\gamma}}$$
$$\xi(p) \sim \frac{1}{\sqrt{\gamma(p)}} \sim \frac{1}{p^{0.84}}$$

SW in 1D

SW in 1D

$$\langle u \rangle = (1 - p) \langle \Theta(-\phi_{i-1})\Theta(\phi_i) \rangle + p \langle \Theta(-\phi_{i-1})\Theta(\phi_i)\Theta(-\phi_{r(i)}) \rangle$$

$$\langle u(\infty) \rangle_{p=0.1} \simeq 0.242 \qquad \langle u(\infty) \rangle_{p=1} \simeq 0.141$$

Finite utilization ⇒ computationally scalable

Edwards-Wilkinson Process on a network

G. Korniss et.al., cond-mat/0508056

Consider:

$$\partial_t h_i = -\sum_{j=1}^N A_{ij}(h_i-h_j) + \eta_i(t)$$
 (1)

where $\,h_i(t)\,$ is a scalar at a node (stochastic field variable such as virtual time)

 $\eta_i(t)$ is delta-correlated white noise with zero mean and variance

$$\langle \eta_i(t)\eta_j(t')\rangle = 2\delta_{ij}\delta(t-t')$$
 (2)

 $A_{ij}=A_{ji}$ is the effective coupling between nodes i and j, $A_{ii}=0$

Defining the Network Laplacian:

$$\Gamma_{ij} = \delta_{ij} \sum_{l=1}^{N} A_{il} - A_{ij} \tag{3}$$

(1) becomes:

$$\partial_t h_i = -\sum_{j=1}^N \Gamma_{ij} h_j + \eta_i(t)$$
 (4)

The steady-state 2-point equal time correlation function is given by:

$$G_{ij} \equiv \langle (h_i - \overline{h})(h_j - \overline{h}) \rangle = \hat{\Gamma}_{ij}^{-1} = \sum_{k=1}^{N-1} \frac{1}{\lambda_k} \psi_{ki} \psi_{kj}$$
 (5)

where $\overline{h}=rac{1}{N}\sum_{i=1}^N h_i$ and $\left\langle \cdot \cdot \cdot
ight
angle$ denotes averaging over noise

 $\hat{\Gamma}^{-1}$ is the inverse of Γ in the space orthogonal to the zero mode.

$$\left\{\begin{array}{ll} \lambda_k, \{\psi_{ki}\}_{i=1}^{i=N} \end{array}
ight\}, \hspace{0.5cm} k=\overline{0,N-1} \hspace{0.5cm} \text{are the k^{th} eigenvalues and normalized eigenvectors.}$$

k=0 represents the zero mode of the network where $\;\;\lambda_0=0$

Thus

$$\langle w^2 \rangle = \left\langle \frac{1}{N} \sum_{i=1}^{N} (h_i - \overline{h})^2 \right\rangle = \frac{1}{N} \sum_{i=1}^{N} G_{ii} = \frac{1}{N} \sum_{k=1}^{N-1} \frac{1}{\lambda_k}$$
 (6)

For large systems and quenched network disorder, typically we have self-averaging:

$$\langle w^2
angle \simeq \lceil \langle w^2
angle
ceil$$
 \Longrightarrow calculate $[G_{ii}]$ get $N o \infty$ limit.

Summary and Conclusions

- BCS exhibits KPZ-like roughening.
- SW-synchronized task-completion systems exhibit mean-field like characteristics.
- SW links generate an effective mass for the propagator of the virtual time horizon (in a field theory sense) corresponding to a finite correlation length and consequently the width becomes finite for an arbitrary small rate of synchronization through SW links while the utilization remains nonzero, yielding a fully scalable task-completion scheme.
- Systems exhibit (strict or anomalous) mean-field-like behavior when the original short-range interaction topology is modified to a SW network.
- When the interaction topology in a network is changed into SW, the extreme fluctuations diverge weakly (logarithmically) and in a power-law fashion with the system size when the noise is short-tailed and heavy-tailed, respectively.
- Our work is applicable to systems with "local" relaxation in a noisy environment.

Acknowledgment: NNSA (DOE) and NSF